

XsP Technology

MU1001

Cap Isolated Low Ripple AC Direct to DC Regulation 1.8V~3.3V low ripple output 50mA

FEATURES

- No switching for good EMI performance
- Capacitive isolation from AC line
- No AC noise to the supply output
- Low output ripple in 10mV
- Single 1.8V~3.3V adjustable output
- Wide AC operating range
- Output loading capacity of 50mA
- Good efficiency above 70%
- Output short-circuit protection
- Patent pending XsP technology (Xtra Small Power AC Direct to DC Regulation)

APPLICATIONS

Plug-in MCU module to an AC machine

- AC powered BLE and Wifi modules
- AC powered IoT sensor modules

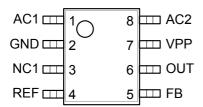
ORDER INFORMATION

Order Code	Package	Packing		
MU1001	SOP-8	Tape & Reel		

DESCRIPTION

MIoT MU1001 is an innovated high performance AC direct to DC power supply for IoT devices. Our patent pending **XsP** technology provides IoT devices a safe and efficient AC plug with the capacitive isolation, the good EMI performance, no AC noise and a low ripple output. The 1.8V~3.3V adjustable output and the 50mA loading capacity meet the needs of IoT wireless control with sensors, such as Bluetooth BLE, LoRa and Zwave.

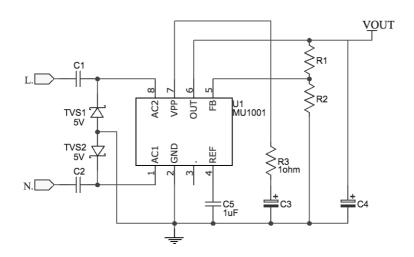
MU1001 is simple, few components and no inductors. It is the best cost-effective and space saving solution for IoT power and any smart control machine.


OUTPUT POWER TABLE

		Output Load	$220V_{AC}$	110V _{AC}
VOUT = 3V	Loading capacity	50mA		
	Burst current in 5ms	100mA		
		Loading capacity		50mA
	C3=680µF	Burst current in 5ms		100mA

Page 1 MU1001 v1.0

PIN ASSIGNMENT & DESCRIPTION

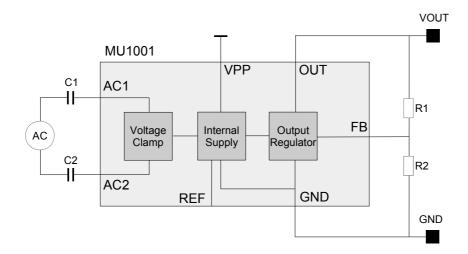

Pin	Pin Name	Description
1	AC1	AC line (L) after capacitive isolation
2	GND	Ground to the output load circuit
3	NC1	no connection
4	REF	Voltage reference
5	FB	Output voltage feedback
6	OUT	Regulated DC output
7	VPP	IC internal supply
8	AC2	AC line (N) after capacitive isolation

FUNCTIONAL CIRCUIT DIAGRAM

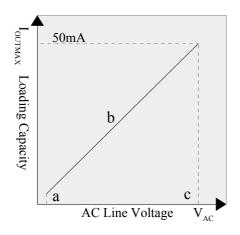
The AC line terminals are fed to AC1 and AC2 via the capacitive isolation elements C1 and C2. The 5-volt TVS protects MU1001 from AC surge attack. The internal regulator converts the AC current directly to the DC output at OUT. The VOUT voltage is adjustable with the divider network R1 and R2.

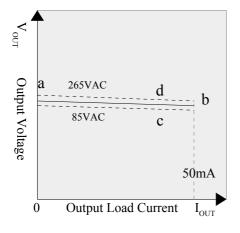
C1, C2 and C3 are also the energy storage elements of the loading capacity at OUT. C4 is the decoupling capacitor at VOUT.

VOUT is capacitive isolated from the AC line. GND can connect to the attached circuit board at any ground reference point.



VOUT	R1	R2
1.8V	0.8 ΚΩ	100 ΚΩ
2.7V	170 ΚΩ	100 ΚΩ
3.0V	200 ΚΩ	100 ΚΩ
3.3V	230 ΚΩ	100 ΚΩ

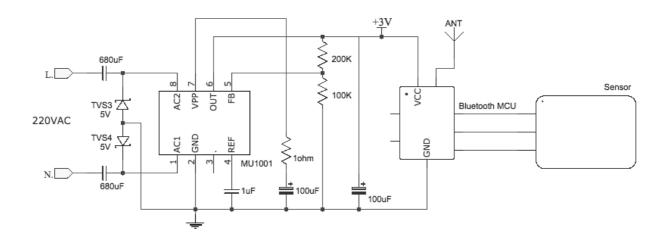

Page 2 MU1001 v1.0


BLOCK DIAGRAM

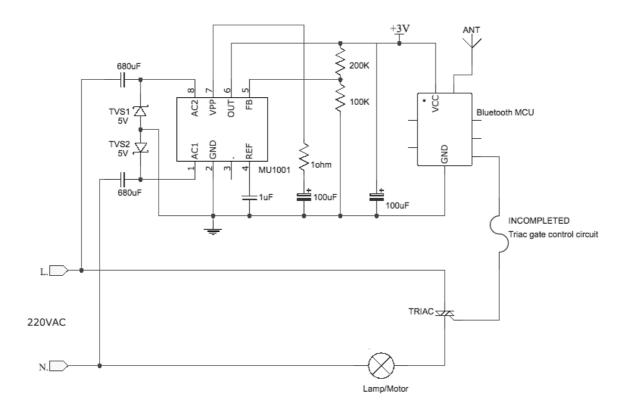
REFERENCE CHARACTERISTIC CHARTS

- a) Startup voltage > V_{pp}
- b) Loading capacity increases as $V_{_{AC}}$ rises $I_{_{OUTMAX}}\!\sim\!V_{_{AC}}$ * (C1+C2) *80
- c) AC operating range is limited by the voltage rating of C1 and C2

- a to b) Load regulation from no load to full load 50mA specified in $\Delta V_{\text{OUT/IOUT}}$
- c to d) Line regulation from $85V_{AC}$ to $265V_{AC}$ specified in $\Delta V_{OUT/VAC}$


Temperature coefficient is specified in $\Delta V_{\text{OUT/TA}}$

Page 3 MU1001 v1.0



REFERENCE APPLICATION CIRCUITS

No AC noise and capacitive isolated Bluetooth sensor

Plug-in Bluetooth TRIAC control over AC lamp or motor

Page 4 MU1001 v1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

PARAMETER	SYMBOL	LIM	UNIT		
FARANIETER	STMBOL	MIN	MAX	UNII	
AC1/AC2 Input Voltage	$ m V_{ACIN}$	-0.3	6.5	V	
AC leakage current	I_{ACLEAK}	-30	+30	mA	
Regulated output voltage	$ m V_{OUT}$	0	4.5	V	
DC Supply output current	I_{OUT}	0	80	mA	
Operating Junction Temperature	T_{J}	-40	125	°C	
Storage Temperature	$\mathrm{T}_{\mathrm{STJ}}$	-55	150	°C	

Absolute maximum ratings are the values beyond which the safety of the device cannot be guaranteed

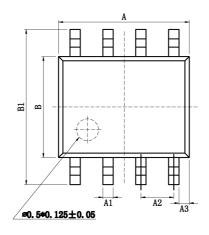
Operating Characteristics

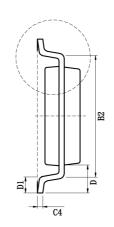
 $V_{PP} = 4V$, $T_{AMBIENT} = 25$ °C, C1 = C2 = 1500nF, C3 = C4 = 100uF, $V_{AC} = 220$ V_{RMS} unless otherwise specified.

PARAMETER	CVMDOI	SYMBOL TEST CONDITIONS	VALUES			UNIT
FARAMETER	SIMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNII
Internal supply voltage	V_{PP}			4		V
Regulated output voltage	$V_{ m OUT}$		1.8		3.3	V
Supply output current	I_{OUT}				50	mA
VOUT output accuracy	ΔV_{OUT}			±1		%
VOUT load regulation	$\Delta V_{\text{OUT/IOUT}}$	$V_{OUT} = 3V$ $I_{OUT} = 0 \sim 20 \text{mA}$		0.3		V
VOUT line regulation	$\Delta V_{\text{OUT/VAC}}$	$V_{OUT} = 3V$ $V_{AC} = \pm 10\%$		1		%
VOUT ripple	V _{OUTRIPPLE}	$V_{OUT} = 3V$ $I_{OUT} = 20mA$		10	30	mV
VOUT temperature coefficient	$\Delta V_{\text{OUT/TA}}$	V_{OUT} = 3V T_A = -40°C ~ +85°C		±1		%
Conversion efficiency	η	$V_{OUT} = 3.3V$ $I_{OUT} = 30mA$		70		%

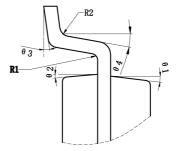
Data and figures in the above charts are subject to change without notice

Page 5 MU1001 v1.0




PACKAGE DIMENSIONS

SOP-8


DIMENSIONS	MIN	MAX	DIMENSIONS	MIN	MAX	
A	4.80	5.00	C3	0.05	0.20	
A1	0.356	0.456	C4	0.203 (TYP)		
A2	1.27 (TYP)		D	1.05	(TYP)	
A3	0.345	(TYP)	D1	0.40 0.60		
В	3.80	4.00	R1	0.20 (TYP)		
B1	5.80	6.20	R2	0.20	(TYP)	
B2	5.00	(TYP)	Θ1	17° (TYP)		
C	1.30	1.50	Θ2	13° (TYP)		
C1	0.55	0.65	Θ3	0° - 8°		
C2	0.55	0.65	Θ4	4° -	12°	

Controlling dimensions are in millimeters

IMPORTANT NOTICE

MIoT Limited reserves the right to make changes in the circuitry and the specification of this chip without prior notice. Customers are advised to check MIoT for the latest information.

Page 6 MU1001 v1.0